
Extending and Benchmarking the “Big Memory”
Implementation on Blue Gene/P Linux

Kazutomo Yoshii

Mathematics and Computer Science Division
Argonne National Laboratory

ZeptoOS Project

● Activities:

● System Noise Study: Selfish suite

● I/O Forwarding: ZOID

● Memory Subsystem: Big Memory

● Communication Stack

● Performance Analysis: Ktau

● Open Source

● Kernel profile at the ANL BGP machine

● Collaborators:

● U. of Oregon, U. Of Chicago, U. Of Delaware

● ASTRON (the Netherlands Foundation for Research in Astronomy)

● U. of Tokyo

● IBM

IBM Blue Gene/P

● PowerPC 450

● Compute Node(CN) and I/O Node(ION)

● 4-way SMP , cache coherent(L1D), write-through is required

● Software managed TLB, 64 entries, 1KB – 1GB page size

● Special Network

● Torus, Collective, barrier, jtag

● Compute Node Kernel(CNK)

● Tickless kernel (noise free), no pre-emption

● Static mapped TLBs

● 3 running modes(job submission parameter):

– SMP, DUAL and Virtual Node(VN)

● No flexible! e.g. no remote login

● Getting complicated

OS Noise Experiments on Blue Gene/L CNK

Injected artificial noise:

16 usec detour every 1ms
1.6% of CPU time
(0.03 - 0.1% on Linux)

OS Noise on Blue Gene/P Linux (2.6.29)

Average: 0.17%

Core1: 0.53%

Other Cores: 0.05%

Fixable but left unmodified

Preliminary Measurements

● Start four processes on node(4-way SMP)

● Compare performance between:
● CNK VN mode

– strict CPU affinity
● Linux(SMP) 64KB

– no-binding
● Up to Linux scheduler, migration might occur

– binding
● Set CPU affinity, no migration

NAS Parallel Benchmark

NOTE: CNK uses MPICH/DCMF while Linux MPICH/TCP (eth-over-torus)

Single Node Performance

3
7
4
1
5
6
0
2

0
1
2
3
4
5
6
7

Benchmark array

What's happening?

● Doesn't seem OS noise is an issue

● Schedule issue: nonbinding -> binding

● TLB miss

● Approx. 0.2 us per miss

– TLB miss interrupt , a hundred instructions

● Only 64 TLB entries per core

– some of TLBs are used by kernel

– With 64KB, it only covers less than 4MB

● Doesn't impact streaming access patterns

– A TLB miss only happen every 64KB

● Impact a lot on stride or random access patterns

– Every load/store incurs 0.2 us overhead in the worst case

● e.g. load L1: 4 cycle, L3: 50, DRAM: 100 cycles

Approaches

● Hugetlbfs

● Mitigate the issue

● Does not eliminate TLB miss completely

● Semi-transparent with libhugetlbfs

● Our approach: Big Memory

● TLB miss free region to high performance application

– Co-exist with regular page.

● Transparent. No API is required

– modified exec() handler

● Support BGP DMA, which requires physical contiguous

● Our previous Big Memory implementation

– Successfully resolved the issue

– Only support one process per node

Big Memory implementation

● Boot time allocation

● Size is adjustable via kernel parameter

● Kernel is rebooted for every job submission on Blue Gene/P

● Transparency

● Big Memory process is identified by ELF flag(e_flags field)

● Kernel exec() loads text, data, initial stack frame into memory

● Create virtual memory area(VMA) for Big Memory region

● No special API is required.

– e.g. mmap() automatically switches to Big Memory

● Initial implementation

● Unique resource per node (SMP mode in CNK)

● Applications had to create threads to utilize all core(FPU) resources

● Technical Challenges

● TLB is not flexible as well as TLB is scarce resource

● 32-bit address space

Memory Faulting (regular process)

unsigned long *buf;
....
buf = malloc(...); // mmap() expands VMA
...
buf[0] = val; // cause TLB miss

...

buf[1] = val; // no TLB miss (if no CSW happened)
...

Big Memory Faulting

VN mode – four processes per node

● Resource partition

● Physical memory allocation

● Virtual memory manager

– Big Memory mmap() region

● Core ID to identify Big Memory process ID

● Job launcher(zoid) fork, exec() with setting CPU affinity

● Unique resource per core

● Modifications on communication stack

● Modified: Kernel API, SPI

● Almost no modification: MPICH/DCMF

Memory Benchmark

NAS Parallel Benchmark

NAS Parallel Benchmark up to 32K cores

Nek5000

Next Steps

● Merge into kernel.org?

● very architecture specific and not generalized yet

● Use main stream feature?

– transparent hugepages

● Other architecture

● x86 1GB page

● Next Generation Machine

● Blue Gene/Q is coming

– 16 cores (4 SMT) is challenging!

– 64-bit address space is nice!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

